Rupture to the Trench: Dynamic Rupture Simulations

نویسندگان

  • Jeremy E. Kozdon
  • Eric M. Dunham
چکیده

There is strong evidence that the 11 March 2011 Tohoku earthquake rupture reached the seafloor. This is surprising because the shallow portion of the plate interface in subduction zones is thought to be frictionally stable, leading to the widely held view that coseismic rupture would stop several tens of kilometers downdip of the seafloor. Various explanations have been proposed to reconcile this seeming inconsistency, including dynamic weakening (e.g., thermal pressurization) and extreme stress release around shallow subducted seamounts. We offer a simpler explanation supported by 2D dynamic rupture simulations of the Tohoku earthquake. Our models account for depth-dependent material properties and the complex geometry of the fault, seafloor, and material interfaces, based on seismic surveys of the Japan Trench. The fault obeys rate-and-state friction with standard logarithmic dependence of shear strength on slip velocity in steady state. In our preferred model, the uppermost section of the fault is velocity strengthening. Rupture nucleates on a deeper, velocity-weakening section. Waves released by deep slip reflect off the seafloor, transmitting large stress changes to the upper section of the fault driving the rupture through the velocitystrengthening region to the trench. We validate the model against seafloor deformation and 1-Hz Global Positioning System (GPS) data. The seafloor displacements constrain the seismogenic depth and overall amount of slip, particularly near the trench. Our simulations reproduce many features in the GPS data, thereby providing insight into the rupture process and seismic wave field. Sensitivity to parameters is explored through an extensive suite of simulations. Neither static seafloor deformation nor onshore 1-Hz GPS data can uniquely determine near-trench frictional properties due to trade-offs with average stress drop. While conducted specifically for the Japan Trench region, our simulations suggest that rupture to the trench in megathrust events is quite possible, even if velocity-strengthening properties extend tens of kilometers landward from the trench. Online Material: Mp4 movies of particle velocities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-trench slip potential of megaquakes evaluated from fault properties and conditions

Near-trench slip during large megathrust earthquakes (megaquakes) is an important factor in the generation of destructive tsunamis. We proposed a new approach to assessing the near-trench slip potential quantitatively by integrating laboratory-derived properties of fault materials and simulations of fault weakening and rupture propagation. Although the permeability of the sandy Nankai Trough ma...

متن کامل

New geometry for TCP: severe plastic deformation of tubes

Since tubes are widely used for different industrial applications, processing of tubes by the Severe Plastic Deformation (SPD) method has been the target of different attempts. Among these attempts, development of SPD processes for tubes based on Equal Channel Angular Pressing (ECAP) has been more successful. As an illustration, Tube Channel Pressing (TCP) has been presented as an attractive SP...

متن کامل

A Dynamic Model of the Frequency - Dependent Rupture Process of the 2011

We present a 2D dynamic rupture model that provides a physical interpretation of the key features of the 2011 Tohoku-Oki earthquake rupture. This minimalistic model assumes linear slip-weakening friction, the presence of deep asperities and depth-dependent initial stresses. It reproduces the first-order observations of the along-dip rupture process during its initial 100 s, such as large static...

متن کامل

Structural control on the Tohoku earthquake rupture process investigated by 3D FEM, tsunami and geodetic data

The 2011 Tohoku earthquake (Mw = 9.1) highlighted previously unobserved features for megathrust events, such as the large slip in a relatively limited area and the shallow rupture propagation. We use a Finite Element Model (FEM), taking into account the 3D geometrical and structural complexities up to the trench zone, and perform a joint inversion of tsunami and geodetic data to retrieve the ea...

متن کامل

Localized water reverberation phases and its impact on back-projection images

Coherent radiators imaged by back-projections (BP) are commonly interpreted as part of the rupture process. Nevertheless, artifacts introduced by structure related phases are rarely discriminated from the rupture process. In this study, we use a calibration event to discriminate between rupture and structure effects. We re-examine the waveforms and BP images of the 2012 Mw 7.2 Indian Ocean eart...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013